Housekeeping

Housekeeping

close all; clear; clc; format shortG; s = tf('s');

Setup

Let us begin by setting up our simulation time and a sample input.

% Initialize a time vector for our investigation
t_start = 0;
t_stop = 50;
t_step = 0.1;
t = 0:0.01:50;
 
% Initialize a step input for our investigation
u_mag = 1;
u_start = 5;
u = t;
u(u<=u_start) = 0;
u(u>u_start) = u_mag;
 
% Plot our input
f = figure(); f.Position = [0 0 500 300];
plot(t, u); title('sample input'); xlabel('time (s)'); ylabel('magnitude'); ylim([0 u_mag*1.1]);

Sample Second Order System:

To begin our analysis we first generate a random second order system.

For practical purposes, this system will approximate transfer functions of the form:

% Random system to approximate (second order; no zero)
k_mystery = rand;
w_mystery = rand;
z_mystery = rand;
sys_mystery = tf(k_mystery*w_mystery^2, [1 2*z_mystery*w_mystery w_mystery^2]);
 
% Save the input frequencies magnitude & frequency response of the mystery system for later use
[mag_mystery, phase_mystery, freq_mystery] = bode(sys_mystery);
 
% Display the frequency response of our mystery system
f = figure(); f.Position = [0 0 800 500];
bode(sys_mystery); title('Mystery System Response');

Optimization

We can manually alter k, w, & z values until the system response matches the mystery response.

Note: Nesting multiple for-loops is grossly inefficient computionally. It takes approximately 6-7 seconds to run this script with 20 values per parameter.

k = 0.05:0.05:1; % range of potential values for gain
w = 0.05:0.05:1; % range of potential values for natural frequency
z = 0.05:0.05:1; % range of potential values for damping ratio
a = 0.05:0.05:1; % range of potential values for the zero
 
error_all = [];
error_combined = [];
 
% loop through every potential combination of k, w, & z
for i = 1:length(k)
for ii = 1:length(w)
for iii = 1:length(z)
sys_candidate = tf(k(i)*w(ii)^2, [1 2*z(iii)*w(ii) w(ii)^2]);
[mag_candidate, phase_candidate, freq_candidate] = bode(sys_candidate, freq_mystery);
error_mag = sqrt(mean((mag_candidate-mag_mystery).^2)); % root mean square error
error_phase = sqrt(mean((phase_candidate-phase_mystery).^2)); % root mean square error
error_all = [error_all; error_mag error_phase, k(i), w(ii), z(iii)];
error_combined = [error_combined; error_mag+error_phase, k(i), w(ii), z(iii)];
end
end
end
 
[min_error, location] = min(error_combined(:,1), [], 'ComparisonMethod','abs');
results = [error_combined(location, 2:end); k_mystery w_mystery z_mystery];
 
error = error_combined(location, 1);
k_estimated = error_combined(location, 2);
w_estimated = error_combined(location, 3);
z_estimated = error_combined(location, 4);
fprintf('k_est = %g \nw_est = %g \nz_est = %g\nerror = %g', ...
k_estimated, w_estimated, z_estimated, error);
k_est = 0.4 w_est = 0.75 z_est = 0.8 error = 0.649459